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Abstract

Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns

of some of the lowest-frequency magnetic normal modes of submicron patterned elements. For a

Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest frequency normal

mode at 4 GHz corresponds to precession in the “ends” of the ellipse. This mode is not predicted by

quantization of wavevectors in the confined geometry. The eigenmodes of a normally magnetized

50 nm diameter × 15 nm thick cobalt disk are calculated. The calculated eigenfrequencies increase

linearly with applied field, mimicking the behavior of the experimental critical current for spin

transfer instabilities in an experimental realization of this disk.
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I. INTRODUCTION

Knowledge of the magnetic normal modes is valuable for understanding the thermal noise

behavior of small magnetic elements such as those in sensors or MRAM cells. A number

of experimental investigations of normal modes have been carried out on micron-scale pat-

terned elements including squares in remnant states1,2, on squares3,4 and circles3,5–7 in vortex

states and on thin strips8–10. There are relatively few theoretical investigations of normal

modes in magnetic patterned elements, mostly due the difficulty of dealing with nonuniform

magnetostatic fields11,12. Grimsditch et al. have used micromagnetic techniques to exam-

ine the normal modes of a small rectangular block, comparing the computed frequencies to

frequencies calculated from infinite film dispersion relations with discrete wavevectors13.

While normal modes are can describe dynamics only for linear dynamics, they are also

useful for understanding the instabilities that lead to nonlinear phenonomena such as switch-

ing and large amplitude oscillations driven by applied fields or spin transfer torques.

While spin transfer effects are most frequently observed in systems with two magnetic

layers they have been been observed14–16 and calculated17,18 in systems with a single magnetic

layer. In single films, a proper description of spin transfer instabilities requires a tight

integration of a transport calculation with a micromagnetic calculation. Calculations done

to date17,18 have focused on the transport calculation at the cost of using an oversimplified

treatment of the micromagnetic interactions. The most important simplification is that

the samples are treated as infinite layers with magnetostatics either ignored or treated as

a uniaxial anisotropy. To understand the consequences of this oversimplification, we have

computed the normal modes of some of the measured samples14. In these samples, the

ferromagnetic layer is more like a disk than a thin film so that the modes are very different

from thin film modes.

This paper explores the normal modes of two nanometer-scale patterned bits, one a thin-

film ellipsoid that illustrates the computational technique and the other is a short cylinder

that models the magnetic nanoelement in a spin-transfer torque experiment14.

The micromagnetic calculations were performed using the NIST micromagnetic test code,

OOMMF19. Starting with a minimum energy state, the magnetization is excited by a short,

strong field pulse so that magnetic moments were rotated a maximum of approximately 10◦.

In general this field pulse was not uniform. Field pulses with different symmetries were used
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to excite normal modes with corresponding symmetries. After the field pulse, the evolution

of the magnetization was calculated using the Landau-Lifshitz equations of motion with

Gilbert damping and α = 0.01. The evolution of the magnetization during the ringdown

was captured by saving the magnetization configuration M(ri, tj) at uniform time intervals.

In many cases, the ringdown appears as a complicated wiggling of the magnetization when

viewed as an animation. However, when viewed in the frequency domain, the apparently

complicated behavior can be understood as the superposition of a few normal modes.

For each point ri in the magnetic element, the ringdown record contains a time series of

the magnetization at that point. Local power spectra of the magnetization are constructed

by performing a discrete Fourier transform,

Sx(ri, f) =

∑
j

Mx(ri, tj)e
i2πf tj .

2

(1)

To obtain an overall view of the magnetization behavior, the power spectra are summed

over ri.

S̄x(f) =
∑

i

Sx(ri, f). (2)

Note that S̄ is very different from the power spectrum of the spatially averaged magne-

tization. We find that plots of S̄(f) exhibit many peaks corresponding to oscillations at

eigenfrequencies of the magnetization. At these peak frequencies, S(ri, f) gives a map of

the precession amplitude for the excited mode.

II. THIN ELLIPSE

We have calculated linear magnetization dynamics for a 160 nm × 350 nm × 5 nm ellipse

of Permalloy in zero applied field using 2.5 × 2.5 × 5 nm3 cells. The relaxed state of this

ellipse has nearly uniform magnetization aligned with the long axis of the ellipse in the

central region but nearer to the edges, the magnetization tends to follow the edge contour,

except at the ends where the magnetization points normal to the edge.

Field pulses with different spatial symmetries were used to highlight different normal

modes. The modes are shown along the top of fig. 1. The modes excited by a uniform field

pulse include the lowest frequency mode corresponding to motion near the “ends” of the

ellipse where the magnetization has a large component normal to the edge. Also excited are
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FIG. 1: Eigenmode images (top) and spatially averaged power spectra (middle) for a 160 nm ×

350 nm × 5 nm ellipse of Permalloy in zero applied field. The spectra and images were obtained

from three time series following excitation field pulses with three different symmetries. The mode

frequencies are compared with frequencies calculated from a spinwave dispersion relation (bottom).

The line labeled “U” is calculated for precession of uniform magnetization.

a mode with large amplitude in the center and a series of modes with even numbers of nodal

lines running parallel and perpendicular to the symmetry axes of the sample. To excite

other modes, we have used excitation pulses with other symmetries, including field pulses

with field amplitudes proportional to x or y as measured from the center of the sample. The

end modes have nearly the same resonant frequency whether the precession in the ends is

in phase (uniform pulse) or out of phase (odd-y pulse). This indicates that the ends of the

ellipse interact very weakly.

We have attempted to explain the observed spectra using analytical models that include

the effects of applied field, exchange and magnetostatic interactions. The magnetostatic

interactions can be approximated two ways: 1) by calculating demagnetization factors for

uniform magnetization or 2) by using the dispersion relation for spinwaves in infinite thin

films and selecting discrete wavevectors appropriate for the sample geometry.

Because the sample is not an ellipsoid, the magnetostatic fields are not uniform. We

calculate spatially averaged demagnetization factors for the ellipse using Ed = 1
2
Vsµ0NαM2

α

for uniform M pointing in the x, y and z directions to yield Nx = 0.0515, Ny = 0.0182, and

Nz = 0.931. For an ellipsoid with the same demagnetization factors, the precession frequency
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for uniform magnetization is ω = γµ0Ms

√
(Nx −Ny)(Nz −Ny) or f = 4.91 GHz, marked

as “U” in fig. 1. The gyromagnetic ratio, γ = 2.11× 105 m/As and Ms = 8× 105 A/m.

To estimate frequencies for nonuniform modes, we use the dispersion relation for an

infinite thin film. At zero applied field with the magnetization in plane,(
ω(k)

γ

)2

=

[
Hd + Ms(1−Nk) +

2A

µ0Ms

k2

]

×
[
Hd + MsNk

k2
x

k2
+

2A

µ0Ms

k2

]
. (3)

Here, Nk = [1−exp(−kd)]/kd is a k-dependent demagnetization factor for a film of thickness

d20, A is the exchange stiffness parameter, A = 13 pJ/m. If we naively chose discrete

wavevectors k such that kx = nxπ/Lx and ky = nyπ/Ly for integer nx and ny, the frequencies

given by (3) are plotted along the bottom of fig. 1.

The agreement between the eigenfrequencies determined from the dispersion relation and

the eigenfrequencies determined from the full micromagnetic calculation is qualitative at

best. The discrete values of k correspond more closely to rectangular samples than to the

elliptical shape. For the results shown, we have used the average static demagnetization

field Hd is −NyM = -14.6 kA/m, but there is some ambiguity in this choice. The static

micromagnetic calculation yields a field of only Hd = −6.22 kA/m at the center of the

ellipse where the precession is strongest for many of the modes, but when this value is used,

agreement with the dynamic micromagnetic results is worse. A final shortcoming of the

simple models is that they do not predict modes corresponding to the end modes.

III. NANODOT

We have used the spectral mapping technique to look at the eigenmodes of a normally

magnetized disk of cobalt, 50 nm in diameter and 16 nm thick with an applied field ranging

from 2 T to 4 T along the z direction normal to the circular faces of the disk. Experiments14

show that the magnetization of this nanodot becomes unstable when the current passing

through it exceeds a field-dependent critical current.

The micromagnetic modeling was done with 1 nm cubic cells. Because the thickness of

the disk is comparable to the diameter, this is a 3D calculation. Precession was excited by

applying a field pulse Hp(r) ∝ xyz only in the region x > 0, y > 0 and z > 0. Modes even
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FIG. 2: Normal modes and spectral density for a 16 nm thick, 50 nm diameter cobalt disk for a)

modes with even z-symmetry and b) modes with odd z-symmetry. Because the second odd mode

is nonuniform both in plane and normal it is most likely to be driven unstable by a spin current.

and odd in z were determined by computing power spectra of M+
x (r, t) = Mx(x, y, d, t) +

Mx(x, y, 0, t) for even modes and M−
x (r, t) = Mx(x, y, d, t) −Mx(x, y, 0, t) for odd modes.

The power spectra and mode images are shown in fig. 2.

Calculations17,18 show that the stability or instability of particular modes of the magne-

tization depend on the competition between the current induced torque and the damping.

The current induced torque increases linearly with the current and depends on the geometry

of the mode becoming unstable. For the current induced torque to drive a mode of the mag-

netization in a single layer toward instability, two things are required. First, the mode must

be laterally non-uniform so that spins diffusing in the leads from one part of the magnetic

layer to another exert a torque. Second, the two interfaces need to be asymmetric, otherwise

the torques on both interfaces cancel. This asymmetry can arise in two ways: the leads on

the two sides can be asymmetric17 or the mode that becomes unstable can be non-uniform

through the thickness of the layer18.

The damping, on the other hand, is independent of the current and is proportional to the

frequency of the mode being excited when the precession is circular. When the precession is

elliptical, the dependence of the damping on the frequency is more complicated. Generally

speaking, mode frequencies increase with external magnetic field. This increase leads to an

increase in the damping for the mode that becomes unstable, so that the critical current for
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FIG. 3: Applied field dependence of normal mode frequencies. Crosses are for even z-symmetry

modes and circles are for odd z-symmetry modes. The upper line shows the extrapolation of the

2nd odd mode to zero field and the lower line shows the mode model used in ref.(CITE)

an instability increases with external field.

Calculations based on the dynamics of a thin film18show that the lowest threshold for

instability is for a mode odd in z and with a wavelength comparable to the dot diameter. We

identify this mode as the second odd mode shown in fig. 2b). Even though other modes have

lower frequency and less damping, the greater current induced torque due to the asymmetry

in the nz = 1 mode overcomes the extra damping.

One of the prominent features of the experimental data is that the critical current extrap-

olates to zero as a function of the magnetic field applied normal to the disk14. To investigate

this behavior, we compute the field dependence of the frequencies of the modes most likely

to become unstable. See fig. 3. In agreement with experiment, we find that they extrapolate

to zero frequency at a field closer to zero than would be naively expected for thin-film-mode

considerations, ω = γµ0[H−Ms +D(π/d)2]. However, this agreement is coincidental rather

than fundamental and may not be the explanation for the experimental results.

In summary, we have used dynamic micromagnetic techniques to determine the lowest

frequency eigenmodes for a magnetic ellipse in zero field and a for a perpendicularly mag-

netized disk. The eigenfrequencies are only in qualitative agreement with simple models,

which fail to predict localized modes at the end of the ellipse. The field dependence of the

eigenmode frequencies in the disk mimics the field dependence of the critical currents in a
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spin transfer torque experiment.
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